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CONSULTING FLUID 
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h the basis of an asymptotic analysis of the equations describing the 
motion of charged components of a poorly conducting fluid in an electric 
field, a method is examined for computing the Coulomb forces due to the 
space charge. It is assumed that the rate of charged particle formation 
because of dissociation processes is dependent on the field strength. 
As experiments show 12-41, convective motion occurs in weakly conductive 
fluids subjected to Coulomb and polarization forces /l/ in strong fields. 
Existing methods of computing the Coulomb forces that play a fundamental 
role in the actions on the fluid are based on using given dependences of 
the conductivity of the medium on the thermodynamic parameters and the 
field strength for calculating the magnitude of the space charge, and the 
contribution of the induced fields is not taken into account here. 
However, the conductivity in poorly conducting media is not a given transfer 
coefficient, and as is shown below, should be determined from the solution 
of the equations of motion of the charged components taking the boundary 
conditions on the fluid-solid interfacial surfaces into account. 

I.. Formulation of the problem. 'TWO electrodes, between which an electric potential 
difference 'ptL'* is produced, are placed in a weakly conductive fluid (such as transformer oil 
with weak electrolyte molecule impurities, etc.). One of the electrodes is a sphere of small 
radius R, while the second electrode is a grounded grid surrounding the sphere and pervious to 
the fluid. We consider the case when the spacing between the electrodes is L>B. 

The distribution of positively and negatively charged particles and the electric potential 
must be found in the interelectrode spacing in order to compute the Coulomb forces in this 
domain. We shall use a three-constituent mixture of neutral particles and two species of 
ions, positive and negative, that comprise a small impurity in the carrying medium of neutral 
particles, as the model of the weakly conductive fluid under consideration. 

Let bulk dissociation reactions proceed in the fluid with the formation of positive and 
negative ions and recombination. Let electrochemical reaction also proceed on the electrode 
surface, whereupon the neutral molecules will be transformed into positive or negative ions 
while the charged particles arriving at the surface from the bulk will become neutral. Since 
we are not interested in the chemical constitution of the ions, we shall use the effective 
parameters to describe them, such as the densities ni*, ne*, the mobility coefficients bier b,*, 
the ionization rate w* and the recombination coefficient a* (the subscripts i and e refer 
to the positive and negative ions respectively). 

The equations describing the stationary distributions of the dimensionless charged particle 
densities nirn,, the electric potential v, the field strength E, and the electric current 
densities ji, ja have the form 

6bs [P (n,’ f rp,n,q’)l’= r2 (aftinp - W) (1.1) 
xcp, (r’rp’)’ = rP (n, - ni), E = -y‘ (1.2) 
I, = -b, ('pw-'n, 2 n.$), s = i, e, f’ s dfldr (1.3) 

Here the convective charged particle transport is neglected and by virtue of the condition 
L> H, spherical symmetry is assumed. The assumprions mentioned impose a lower constraint on 
the magnitude of the field strength. Dimensionless variables are introduced into (l.l)-(1.3) 
as follows: 

i,* 
jl E - 

IO 1 
,,,d!?, a+$., b8=y 

no=w~"~ue -'II, jc = e&b 1%' IR-' 

Here r*is the distance from the centre of the spherical electrode, e, is the charae on a 
proton, and k is Boltzmann's constant. The subscript zero denotes the characteristic values 
*Prikl.Idatem.Mekhan.,49,5,766-774,1985 
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of the parameters and the asterisk the dimensional variable. 
Three dimensionless parameters 

occur in (l.l)-(1.3) 
In a strong field the effective ionization rate can depend not only on the temperature 

T*and density )I,* of the dissociating particles (these quantities are considered constant) but 
also on the field strength /5, 6/. We write the quantitlr u' in the form /6/ 

1,’ : U’ (?I., . T. 0) elp (2p / E / ’ 2). p = e,,ylr’ + (dT*R)-‘!? (1.R) 

Here u' (II,. T. 0) is the dimensionless ionization rate in the absence of a field (this 
quantity is considered given), and E is the permittivity of the medium. 

We write the boundary conditions for (1.1) and (1.2) on the surface of the spherical 

electrode in the form (s = i,e) 

(1.5) 

Here k,*, li,$* are the effective parameters of surface electrochemical reactions of the 
type A-Se ,-A, B---e= B. The quantities k,. k,, are later considered given. The upper sign 

on the left side of (l.l), on the right sides of (1.3) and the third relationship (1.7: 
corresponds to positive ions (s = i), The selection of the sign in the second relationship of 
(1.7) is governed by the sign of mu*. 

By virtue of the assumption L> R, we replace the condition on the outer electrode by 
the asymptotic conditions 

It is here assumed that the medium is quasineutral fairly far from the electrodes, the 
electric fields is small (because of the spherical geometry of the problem), and the charged 
particle densities are governed by the chemical equilibrium conditions. 

Eqs. (l.l)-(1.3) and boundary conditions (1.7)-(1.8) enable us to find the charged particle 

density, the electric potential, and the field strength distributions in the neighbourhood of 

the spherical electrode, and to compute the magnitude of the Coulomb forces acting on the fiuid 
in the interelectrode space by means of these distributions. 

The physical mechanism resulting in the appearance of a space charge (SC) in the initially 

neutral dissociating medium during current passage througha domain with a non-uniform electrical 

field distribution is examinedin /I/. Estimates in general form were carried out there for 

the limits of applicability o f the relationships used to compute the Coulomb forces by means 

of a given dependence of the conductivity of the medium on +-he field and other parameters. 

An asymptctic analysis of the probiem formulated in the case when the parameters are 64 

l.rw>l."uO 31.~~. 31. and the ionization rare is independent of the field, was performed in 

/S/. It has been shown that for a certain relationship between the parameters of the surface 

electrochemical reactions the problem has a solution describing the bipolar structure of the 

SC domain near the electrcde, which was observed in the experiment (the sign of the SC in the 

diffusion boundary layer agrees with the sing of the electrode charge and the Coulomb force is 

directed fromthe electrode; a SC of opposite sign, whose density decreases monotonically to 

zero with distance from the electrode, is formed outside the diffusion layer, and the Coulomb 

force acts in the direction 0 f the electrode in this domain:. 

An asymptotic analysis of the problem is performed below under the conditions when the 
parameters are 6<1,qu->1.6~z,< 1.~. = u’(E). It is shown that the domain outside the diffusion 

boundary layer also has a bipolar struct'ure; the SC of the medium changes sign with distance 

from the diffusion layer boundary, and a domain occurs with the same named charge as the 

electrode. In this domain the Coulomb force is again directed frootheelectrode. A numerical 

solution is also obtained for the problem in the complete formulation for values of the Fara- 

meters corresponding to real weakly conductive fluids. 

2. Asymptotic analysis of the problem in a diffusionless approxkxtlon. IGE 
will investigate the behaviozr of solutions of the probier form;iated zbcve ir: +he domain 

outside the diffusion boundary layer under conditions when the parameters are S<l,cp, > 1. 

To simplify the iaiculaticns we consider the iase when tl:e charged particle mtibiiity coefficients 

are identical (bi* be*). +he rers!?inaticn coefficient is calculated by the Langevin for?ula, 

and the quantities K 02~. T, 0), k,*. k,,* are constants. For an appropriate selection of the 

characteristic values of the parameters we cx e1.identl.y set b, = b, zz 1. ‘L IT I, h_, = k,. .= i. u = 
exp (2@ 1 E I’>). We introdilce the new veriaisies 



q = ni - ner u = nl -I- n, 
The quantities g and Al are the dimensionless space charge density and conductivity 

medium. Using these variables we write (l.l)-(1.3) by neglecting components describing 
diffusion transport of charged particles 
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(2.1) 
of the 
the 

(2.2) 

w'=$[2oxp(28jEI',~)-_$l, p=& 

In the zeroth approximation in the small parameter 6'9 the equations (2.2) yield the para- 
meter distributions for the medium in the domain outside the diffusion boundary layer. 

To be specific, we consider the case of a negatively charged electrode (tpw* < 0). The 

boundary conditions for (2.2) have the form /S/ 
r=l, r!?u (D - q) E = h, [‘/,v, (u - q) - 11 (2.3) 
r+oD, c-to. q-+0, o-2 

iE&=--l (2.1) 
1 

The diffusion component is omitted in the second relationship in (2.3) and it is here 
considered that the parameter ?,, > 6. It follows from the first two equations of (2.2) that 

rSoE = j = const (2.5) 

The constant of integration j is the total curren t density on the electrode in the approxi- 
mation under consideration. After solving prohlen (2.2), (2.3) by using condition (2.4), a 
relation can be found bctweon the current on the electrode j and the applied potential difference 
qU, the current-vcltago characteristic of the electrode. 

The parameter P in system (2.2) can be represented in the form of the relationship P= 
Tc!,:Tt. where T,>.= tu.,zul-'? is the characteristic time of the change in the charged particle 
density because of the bulk chemical reactions, and or= H'(b,/t~~lI-' is the characteristic time 
of ion drift in the electric field. We will perform an asymptotic analysis of the problem for 
coditions when the charged particle motion under the effect of the field disturbs the chemical 
equilibrium slightly: here ~41. The parameter p is contained in the equations as a factor in 
front of the derivatives, for small p the problem is singularly disturbed, consequently, the 
method of boundary layer expansions /lo/ can be utilized. 

We introduce the boundary-layer (BLI variable r = (r- 1)~-r and we seek the solution in 
the form of expansions in the parameter v that consist of a smooth part (dependent on the 
variable r), and a BL part (dependent on the variable r) 

f = f. (r) 7 pfl (r) + . . - F, (T) + PF, (7) + . . . 

where I = g,o, E. We substitute these expansions into (2.2) and equate terms with identical 
powers of p,where the terms dependent on r and T are, according to /lo/, equated separately. 
The non-linear terms containing the products of the smooth and EL functions refer to the BL 
equations, and the smooth functions therein are expanded in Taylor series in the neighbourhood 
of the point r = 1. 

For the initial approximations of the smooth part of the expansions after the calculations, 
we will have 

Here j,, is the constant of integration that represents the zeroth term of the expansion 
of the total current density on the electrode in the parameter p. It is seen from the second 
equation in (2.6) that E, is a function decreasing monotonically in absolute value as r 
increases. The quantity od.-& as r-+00. The sign of *r agrees with the sign of E, and does 
not change in the whole domain; here g,+O for r-m. It is seen that the functions of 
the zeroth and first approximation of the smooth part of the solution satisfy the asymptotic 
conditions (2.3) as r-+m. 

The second equation of (2.6) yields jr,, = 2E0,exp (fi jEol [1’*), where Ear = E,(l). In the 
zeroth approximation in p a relationship that agrees with (2.4? is obtained for the function 
E,(r), therefore E,(r)<O, fwo<O. Substituting E,(r) into (2.4), and integrating by using 
the second equation in (2.6), we obtain 

@-'1 _t 12 - ‘I@-‘t exp ('i,@) = --1, t = 1 &I 1 1n (2.i) 

It is seen from (2.7) that the quantity lEo, 1 decreases monotonically as p increases, 
hence I &oI grows. For fi = 0 the quantity jz0 = -2, as p-00 the asymptotic form of the 
current density is given by the relationship jXO = -82/g. In dimensional variables we have 
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We note that this result agrees qualitatively with experimental data according to which 
the current density for small field intensities is proportionalto the applied potential 
difference while the current dependence on the potential difference is quadratic in strong 
fields /ll/. 

The equations for the functions Fo, (Jo,s 0, that represent the zeroth approximation of the 
BL part of the expansions for the quantities E,p, D. respectively, have the form 

S,=j,;.,,(+- &j, F=F,+E,, (I'.lU) 

The existence of solutions of BL type (tending asymptotically to zero as T-+ m) follows 
from an analysis of the integral curve pattern for (2.9) in the phase plane (F,Q,). The point 
(E,,, 0) whose coordinates correspond to asymptotic values of the desired functions is a saddle- 
point singularity for the equation 

dQd 
_, , 1 ,” .1 4F-exp (rg 1 J 1 ‘) -. I;,0 

d)= 90) 3 
(L?.lf, 

Therefore, two singular integral curves exist that pass through the point (E,,,U). The 
quantities Q. and F are connected on these curves by the relationship 

The singular integral curves have just one point of intersection with the line Q* = (J 
since dQ,ldFf 0 thereon. Consequently, the quantity Q0 does not change sign in the BL domain. 

We will examine the boundary conditions on the electrode surface. The second relationship 
in (2.31 contains the parameters & and T, whose order can generally be different relative to 
the parameter v. In conformity with thrs, the boundary conditions for the BL functions take 
a different form. For instance, we examine the case when the parameters ii, - P,V~ - 1. In the 
zeroth approximation in p we have 

Together with (2.131, relationship (2.12) written at the point t z 0 yields the boundary 
conditions for (2.9). 

We will now examine the qualitative pattern of the parameter distributions in the neighbour- 
hood of the electrode. In the case of a negatively charged electrode (y (1) = -I), the quantity 
F(O)<O, and here it follows from the conditions for the BL solutions of (2.9) to exist that 
we should have QO> 0. For L&Q 1 the main contribution to g in the BL domain is introduced 
by Qo. Therefore, a positive space charge (SC) is generated near the electrode in a layer of 
thickness of the order of p, This charge occurs under the action of a field attracting positive 
charges to the electrode. We note that surface electrochemical processes in which the negative 
ions participate exert an influence on the SC magnitude in the positively charged layer since 
the distribution of g here depends on the values of Q0 (0) and F (0). Outside the BL domain 
QO, Q1+ 0 and the main contribution to the space charge of the medium is introduced by Q,. As 
already noted, the sign of 9, agrees with the sign of EO. In turn, the sign of E, is identical 
with the sign of the electrode. The formation of a negative SC outside the BL domain is 
associated with the progress of the electric current in the dissociating medium in the presence 
of a non-uniform field. 

Therefore, within the framework of the diffusionless model under conditions when the 
dissociation rate depends on E, the following structure of the near-electrode domain can be 
described. Near the electrode surface there is a positive SC layer which is replaced by a 
more extensive domain with negative SC with distance from the electrode, here the maximum 
value of g in the positively charged domain is substantially greater than the maximum value of 

IYI in the negative SC domain. The Coulomb forcein the domain where g(o is directed from 
the electrode. 

We note that a situation is possible when y,(O)==0 on the electrode surface because of 
(2.12) and (2.13). The SC part of the solution is missing here and the negative SC domain 
governed by the smooth part of the solution propagates down to the electrode surface (more 

accurately, to the diffusion layer boundary). Only for such a situation are the representations 

developed in /12/ valid. 
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We calculate the total space charge Q that occurs in the fluid under the action of the 

mechanisms under consideration. Integrating g over the whole space occupied by the medium, 

we will have to terms in tt* 

0 = '?, + Q,, Q, = ---8npF, (0) (2.14) 
Q, = 8npE,, [exp (p 1 E,, \'!I) - 11 

The quantity q,, yields the total positive SC that occurs in the medium under the effect 
of a field directed to the electrode and the surface electrochemical reactions with the 
participation of negative ions. The quantity Qn yields the total negative SC that is formed 
during current progress through a domain with inhomogeneous E under conditions when the field 
accelerates the bulk dissociation process. Both charges are of order p. This is explained 
by the fact that the positively charged layer where Q- 1 has a thickness of the order of p 
while the extent of the negatively charged layer where 1 q 1 -p is on the order of one. 

We will project the Coulomb force acting on the medium at each point along the radius in 
some isolated direction and integrate over the appropriate half-space. To terms of the order 

of CL* an expression can be obtained for the total force P 

P = Pa + P,, P, = -2npF, (0) IF, (0) + 2E,,l (2.15) 
P, = 4np [I j,,, 1 p-’ - I ECU I (I E,, 1 i 2 I Eel II’ *Be’ i 28-*)1 

The quantity P, yields the force that acts in the positive SC layer and squeezes the fluid 
to the electrode. The quantity p, describes the repulsive force acting in the negatively 
charged layer. Both parts of the force are of the order of ),I. It is seen that the repulsive 
force P,is governed just by the value of p. For p = 0 when the field does not affect 
dissipation, P, = 0. For p> 1 the asymptotic value is P,= l!*np. In dimensional variables 
this quantity is P,* = e~,*zl16. We note that the dependence ofP?on p is not monotonic. The 
maximum value P, =: 0.7 31p is reached for a=iO. 

We will estimate the magnitude of the velocity which the repulsive force P, can produce 
in the fluid. In dimensional variables, the extent of the domain with negative space charge 
is of the order of the electrode radius R. For sufficiently small R the force P, can be 
considered as a point. Using the solution of the problem on the flow subjected to a point 
force, we write 

Here c*is the fluid velocity in the direction of action of the point force P,*, q* is 
the dynamic viscosity of the fluid, and Z* is the distance from the point of application of 
the force. The estimate obtained for c.* agrees qualitatively with experimental results /2, ll/ 
where a quadratic dependence of the velocity on the applied potential difference was also 
observed for high field intensities. 

3. Solution of problem (l.l)-(1.3), (1.71, (1.8) for intermediate values 
of the parameters. The numerical solution of problem (l.l)-(1.3), (1.71, (1.8) in the 
complete formulation, obtained by the method of build-up by an implicit difference scheme 
using vector factorization for the solution of the difference equations linearized by using 
iteration, confirms the qualitative pattern described above for the parameter distributions 
of the medium in the neighbourhood of the electrode. The computations were performed for the 
following values of the quantitiesinthe problem 
u’(,= 2.7x 1016m-3sec-1, -1 

R = IO-* m, b, = 3.87x10-* m*V-lsec-1, b, = 1, 6, = 2, 

a, = lx IO-'jrn set , ~(n~, T, 0) = 4, a = 1, T* = 300 K, no = 1.96x 10" mS3, E=Z, 
and Buu, -“S= 0.O33. These values correspond to a fluid with characteristic conductivity 1.03x10-9 
s/cm (such as transformer oil not subjected to any special refining). The characteristic value 
of the mobility coefficient corresponds to a diffusion coefficient of 10-gm2/sec-1, andthevalue 
of a, is calculated from Langevin's formula. The characteristic value of the dissociation 
rate LL'" is taken on the basis of data obtained in /13/ by processing experimental current- 
voltage characteristics. The dimensionless parameters are 6= go-2 and x = 6.8 x IO-?. The para- 
meter p = 6~~ varied in the range l@~f~<iSO as the elctrode potential (F~* varied between 
values of the order of - 1V to -2x10 V. The small value of R selected simulates a needle 
electrode. 

Parameter distributions of the medium are presented below forthe case when the charged 
particles on the electrode surface recombine at an infinite rate (vd=t oc),here n,(i)= n,(i)=o. 
The boundary value is q(1)= -1 (negatively charged electrode). 

Profiles of the ion densities n, (the solid lines: and n(, (the dashed lines) are represented 
in Fig.1 for values of the parameters g-,.= 3.8 x IO4 (curve 1) and(FU. = 7.8 x 101 (curve 2). The value 
of the parameter is FL > 1; here the field in the neighbourhood of the electrode strongly 
disturbs the equilibrium o f the bulk chemical reactions. 

Computations show that in the immediate proximity to the electrode surface there is a thin 
diffusion boundary layer with a thickness of less than ,!1-3R. where the positive ion density 
Crows abbruJ?tl!_ (fC!- lj = i.8 x ?!@the guar.tity n, reaches the value 5.45 in this layer), while 
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Fig.1 

/ 
2/ 7 

Fig.2 

the negative ion density changes slightly. Furthermore, there is a positive SC layer (the 
usual double layer on a negative1 
vu = 3.8 x104 X 

charged electrode) with a thickness of the order of 14~ for 
and 5R for-TX= 7.8x10 . We note that the double-layer thickness in intense fields 

SUbStantially exceeds the Debye length Rd (fi,j= 0.26 R in the case under consideration). The 
diminution in the double-layer thickness as the field grows is associated with the strong 
dependence of the ionization rate on the field. Furthermore the e 

4 
is a negative SC layer whose 

thickness grows as the field strength increases. For v,, == i.8~10 the thickness of this layer 
reaches approximately 20 H. 

The SC and electrical potential distribution is showninFig.2 for vb = 3.84~10~ (curve 1) 
and ~~=7.8x104(curve 2). It is seen that as qr grows the maximum values of jgj in the double 
layer and in the negative SC layer will increase. The dashed line yields the potential 
distribution in the case when 450 (external field). For 
maximum value of the field strength reaches 1.6~10~ kVm_l. 

vu: = 7.8 x104 ((r,,,* = --2 kV) the 

Theelectrode current-voltage characteristic is linear (j-cpu) for TV; 3x104, and a weak 
non-linearity (j- quJ.l* for %,&i.8 x10') starts to appear as I+: increases further. 

The pressure drop which should equalize the repulsive force so that the fluid remains fixed 
can be calculated using the hydrostatic equations. For vu= 7.8~10~ the pressure drop is 
0.03 Pa. Such a pressure drop value can cause a flow velocity of the order of low2 m/see-lina 
stream tube of incompressible fluid. Flows with such velocities have been observed experimentally 
/ll/. 
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